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a b s t r a c t

Radial basis function (RBF) interpolation is a technique for representing a function starting
with data on scattered points. In the vortex particle method for solving the Navier–Stokes
equations, the representation of the field of interest (the fluid vorticity) as a sum of Gaus-
sians is like an RBF approximation. In this application, there are two instances when one
may need to solve an RBF interpolation problem: upon initialization of the vortex particles,
and after spatial adaptation to replace a set of disordered particles by another set with a
more regular distribution. Solving large RBF interpolation problems is notoriously difficult
with basis functions of global support, due to the need to solve a linear system with a fully
populated and badly conditioned matrix. In the vortex particle method, in particular, one
uses Gaussians of very small spread, which lead us to formulate a method of solution con-
sisting of localization of the global problem, and improvement of solutions over iterations.
It can be thought of as an opposite approach from the use of compact support basis func-
tions to ease the solution procedure. Compact support bases result in sparse matrices, but
at the cost of reduced approximation qualities. Instead, we keep the global basis functions,
but localize their effect during the solution procedure, then add back the global effect of the
bases via the iterations. Numerical experiments show that convergence is always obtained
when the localized domains overlap via a buffer layer, and the particles overlap moder-
ately. Algorithmic efficiency is excellent, achieving convergence to almost machine preci-
sion very rapidly with well-chosen parameters. We also discuss the complexity of the
method and show that it can scale as OðNÞ for N particles.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The technique of radial basis function interpolation first appears in the literature as a method for scattered data interpo-
lation, and interest in this method exploded after the review of Franke [11], who found it to be the most impressive of the
many methods he tested. Later, a scheme for the estimation of partial derivatives using RBFs was proposed by Kansa [14],
resulting in a new method for solving partial differential equations [15]. A prominent feature of radial basis function meth-
ods is that they are truly meshfree: the methods use nodes in the computational domain whose location can be chosen at
will. This feature is very important due to the great computational expense which is mesh generation and maintenance in
large-scale applications. However, there is a considerable hurdle in the fact that RBF methods result in a linear system with a
dense, ill-conditioned matrix, with N unknowns for N nodes or centers. This makes it quite difficult to use RBF methods in
very large data sets. Many authors have partially circumvented this problem by choosing to use basis functions of compact
. All rights reserved.

Mechanical Engineering, Boston University, Boston, MA 02215, United States.

mailto:labarba@bu.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


C.E. Torres, L.A. Barba / Journal of Computational Physics 228 (2009) 4976–4999 4977
support, but sacrificing interpolation accuracy in the process. RBFs of compact support result in sparse matrices, but their
approximation properties are inferior to global basis functions [5].

The application driving our interest is the use of radial basis functions in computational methods for fluids simulation.
However, RBF interpolation has found many applications over the years, for which the work presented in this paper
should be relevant. As listed in [8], RBF as a scattered data fitting technique finds application in the mapping of problems
in geodesy, geophysics and meteorology (in general, any interpolation problem has the potential of being formulated with
RBFs). As a form of non-uniform sampling, it is used in medical imaging including tomographic reconstruction. RBFs are
used in mathematical finance, for options pricing, and in computer graphics, for representation of surfaces from laser scan
data. Gaussian functions, in particular, are used extensively in statistics, machine learning, computer vision and others.
The applications are many, but in this paper we focus on the use of radial basis functions within particle simulation ap-
proaches of fluid dynamics.

In computational fluid dynamics, an approach for solving the governing equations that is also meshfree, and has some
relationship with radial basis function methods, is the vortex method. In this method, the Navier–Stokes equations for a vis-
cous fluid are converted to vorticity formulation, and the vorticity field is represented by a superposition of basis functions.
Let xðx; tÞ be the vorticity field of a velocity field uðx; tÞ, so xðx; tÞ ¼ r� uðx; tÞ. The spatial approximation of this field is per-
formed over a set of moving nodes located at xi, as follows:
xðx; tÞ � xrðx; tÞ ¼
XN

i

cifrðx; xiÞ ð1Þ
In the point vortex method, the basis function used is a Dirac delta function, whereas in the smooth vortex particle method a
number of different bases fr can be used. Often, the choice is a Gaussian function, normalized so that it integrates to 1, such
as:
frðx; yÞ ¼
1

2pr2 exp
�jx� yj2

2r2

 !
ð2Þ
The motivation for this type of discretization in the vortex method comes from the physics, and not approximation theory. In
the case of a two-dimensional fluid with no viscosity, the vorticity equation takes its simplest form:
@x
@t
þ u � rx ¼ Dx

Dt
¼ 0 ð3Þ
which simply expresses that vorticity is a quantity that is preserved following material trajectories in the flow. This justifies
discretizing the vorticity field over particle-like elements, which are then allowed to move following the fluid velocity. Such
a Lagrangian approach, added to the fact that the vorticity field is often compact (in contrast with the velocity field), makes
vortex methods a very powerful tool to simulate flows involving bluff bodies, massive separation, or in general where the
vorticity dominates the dynamics.

To incorporate the viscous effects, many schemes have been proposed over the years. One approach that we can use is to
apply the Laplacian operator to the discretized vorticity (1):
r2xr ¼
XN

i

cir2frðx; xiÞ ð4Þ
and use this expression in the 2D Navier–Stokes equation for the discretized vorticity:
Dxr

Dt
¼ 1

Re
r2xr ð5Þ
Such a method, introduced in [10], is analogous to the approach used in the radial basis function methods to solve PDEs [15],
where each term involving partial derivatives in the equations is obtained by differentiation of the linear superposition of
basis functions. A notable difference is that in vortex methods the nodes are moving, whereas in the standard RBF method
for PDEs what changes in time is the value of the nodal coefficients. For a discussion of several other methods for incorpo-
rating the viscous term in vortex methods, see [2].

One of the first questions that we may ask when interested in using the vortex method to simulate a given flow problem is
how to initially discretize a vorticity field, given by an analytical expression or by a data set, in the form (1). Suppose that the
vorticity is known on a set of points fxjg at the initial time. The question is how to accurately represent xðx; t ¼ 0Þ if
xj ¼ xðxjÞ is given as data. This is precisely a problem of radial basis function interpolation, where we need to find the nodal
coefficients ci by collocation:
xrðxjÞ ¼ xj

xrðxjÞ ¼
XN

i

cifrðxj; xiÞ ð6Þ
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The above problem demands solving a linear system A~c ¼ ~x, with a coefficient matrix formed using the basis function on
pairs of data points:
Aij ¼ frðxj; xiÞ ð7Þ
Clearly, the matrix A will be full, if basis functions of global support are used. Moreover, it is known that this matrix is not
diagonally-dominant, which brings about difficulty in solving the system numerically.

In the radial basis function literature, the first work dedicated to developing a custom preconditioning operator for effec-
tively solving such an ill-conditioned system was presented in [7]. The authors developed a preconditioner for the thin-plate
spline (TPS) radial basis, defined as: /ðrÞ ¼ r2 logðrÞ. Recognizing that the basis function is the fundamental solution of the bi-
harmonic equationr4/ ¼ 0, the preconditioner is based on the fact that the bi-harmonic operator applied to / will produce
a Dirac delta function multiplied by a factor. Thus, clustering of the eigenvalues is achieved by operating on the matrix with a
discretization of the bi-harmonic operator, using a triangulation with vertices at the data points.

Subsequently, a preconditioning method was presented in [4] which is based on changing the basis by means of approx-
imate cardinal functions. The preconditioning strategy there was tested with the TPS basis and multi-quadrics,
/ðrÞ ¼ ðc2 þ r2Þ

1
2, and experiments were performed with up to 10,000 nodes. The method involves solving a small linear sys-

tem of size b� b, with b� N, for each node xj, to find the coefficients of an approximate cardinal function centered at that
node. Based on the same idea of approximate cardinal functions, a Krylov subspace algorithm was developed in [9], which is
described as analogous to preconditioned conjugate gradient. The method, however, scales as OðN2Þ in both computational
complexity and memory requirements. An acceleration of the method to OðN log NÞwas provided in [13], using the Fast Mul-
tipole Method [12] to compute the matrix vector products inside the iterations of the iterative solver. The methods just cited
were implemented specifically for polyharmonic kernels, /ðrÞ ¼ r2nþ1, and multi-quadrics.

As mentioned before, in vortex methods it is common to use the Gaussian basis function. Moreover, being a Lagrangian
method where each smooth particle moves with the local fluid velocity, the spread of the Gaussians is required to be small.
In fact, it is commonly accepted that in a vortex method calculation r corresponds to the smallest scale that can be resolved
in the flow. Because we are interested in the RBF interpolation with Gaussians of small spread, one can devise specialized
methods that take into account the fact that the basis functions decay rapidly away from their centers. Recently, a custom
preconditioner has been proposed for the Gaussian basis which is able to provide excellent algorithmic efficiency [3]. The
preconditioner idea is based precisely on this feature of the basis: its fast decay away from each center. We will present
the preconditioning strategy for the Gaussian later on in this paper, for completeness, and because it will be used as well
in the present work.

The main contribution in this work is the development and numerical demonstration of solution methods for radial
basis function interpolation with Gaussians, which are based on two main ideas. The first is that localization by neglect-
ing the far-field influence of the Gaussians should give an approximate solution of the local interpolation problem in the
vicinity of a center. Then, aggregation of the many local problems will give an approximation of the global problem. The
second ingredient adds an iterative strategy to use the aggregated local solutions as consecutive approximations of the
global solution. The methods are characterized by being amenable to parallelization, by demonstrating excellent algo-
rithmic efficiency (number of iterations to converge), and by excellent interpolation accuracy (close to machine
precision).

In the next section, we present the radial basis function interpolation problem more formally, and we summarize the spe-
cialized preconditioner developed in [3]. In Section 3, we define the methods of solution and discuss the techniques of local-
ization and iteration. Subsequently, numerical experiments are presented that demonstrate the algorithmic efficiency and
accuracy of the method developed in this work. In Section 5, we give some implementation details for the algorithm and
develop a study of the computational complexity, demonstrating in practice that we can obtain close to OðNÞ complexity.
We end with a brief discussion, conclusions and comments about future work.

2. Background on radial basis function interpolation with Gaussians

In a radial basis function interpolation problem we are faced with the question of approximating a function, assumed to
be continuous, where only a scattered set of values are known of the function. Let the function values f ðxiÞ be known for a set
of points in the domain X ¼ fx1; . . . ; xNg � X � Rd. Following common notation, as for example used in [17], we write the
approximation to f in the form:
sf ;XðxÞ ¼
XN

j¼1

ajUðx; xjÞ ð8Þ
where U : X�X! R is the basis function, with the following property:
Uðx; yÞ ¼ /ðkx� yk2Þ; with / : ½0;1Þ ! R ðradialityÞ: ð9Þ
Satisfying the collocation conditions on the data points leads to a linear system for the coefficients ~a ¼ ða1; . . . ;aNÞT . Writing
~f for the function values~f ¼ ðf ðx1Þ; . . . ; f ðxNÞÞT , we need to solve:
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U~a ¼~f ð10Þ
where Uij ¼ /ðkxi � xjkÞ. An important set of theoretical results guarantees a solution for this system if the function Uðx; yÞ is
strictly conditionally positive definite and the data distinct [16]. The main difficulty lies in the ill-conditioning of the system,
especially for large data sets, and the computational cost.

As discussed in our introduction, preconditioning strategies have been proposed to alleviate the ill-conditioning and al-
low the use of iterative solution methods. Available results concentrate in particular on the multi-quadric and thin-plate
spline basis functions [7,4]. In our application, where we have Gaussian bases of small spread, one can take advantage of
the rapid decay of the basis to propose a specialized preconditioning method. We wish to apply a preconditioner M to
the system (10),
M�1U~a ¼M�1~f ð11Þ
such that the new system is easier to solve, due to a clustering of the eigenvalues of the coefficient matrix. We want the
eigenvalues of M�1U to be clustered, which means that a good preconditioner M is in some way an approximation to U.
Due to the rapid decay of the Gaussian, a preconditioner based on a sparse approximation to U can be built by making zero
the matrix elements corresponding to the interaction of two particles which are farther from each other than a chosen
threshold. Thus,
Mij ¼
frðxj � xiÞ if jxj � xij < R

0 if jxj � xij > R

�
ð12Þ
In [3], such a preconditioner was found to produce convergence in only a handful of iterations of the GMRES method, and
achieve almost machine precision when calculating the interpolation error at the collocation points. The important choice
of the parameter R determines the efficacy of the preconditioner, with values above 6r being effective.

In production codes of the vortex method, it is not uncommon to utilize in the order of 106 or even more particles. For
such large N, more than just preconditioning is required, especially if one wishes to implement the codes in parallel. The
memory requirements of a matrix-based implementation would be prohibitive, and parallelization easily bogged down
by inter-processor communication.

In that vein, we develop a method which begins by localizing the global problem, and solving many small systems for
local domains. However, this in itself is not enough, as the basis functions are global, so a means of incorporating the
long-range effects will be required. In some sense, we take the opposite approach to using compact support basis functions.
Basis functions of compact support produce sparse matrices and can be solved easily, but they suffer from low convergence
properties and have inferior approximation qualities than global functions. We therefore use global functions, but use an
approach to solve the dense system that localizes the effect of the bases, then adds the long-range effects in such a way
as to maintain the high accuracy provided by the global interpolation.

3. Methods of solution by localization and iteration

3.1. Simplified one-dimensional description

To illustrate the ideas incorporated in our method, we start by a very simplified description in one dimension. Suppose we
have a one-dimensional field VðxÞ (corresponding to the vorticity in our application of interest) defined on ½a; b� where b > a
and a; b; x 2 R. The goal is obtaining an approximation to VðxÞ by a linear combination of Gaussian functions centered on a set
of points in ½a; b�. We will call the centers of the Gaussians ‘‘particles”, even in this one-dimensional description. Let the field
VðxÞ be known at a set of points fxig in ½a; b�. Our problem is expressing the field as a sum of basis functions:
VðxÞ ¼
XN

i

ciGrðx; xiÞ ð13Þ
where the coefficients ci are unknown and the basis function centered at xc is:
Grðx; xcÞ ¼ Grðx� xcÞ ¼
1ffiffiffiffiffiffiffi

2p
p

r
exp

�jx� xcj2

2r2

 !
ð14Þ
For simplicity in our illustration of the method, let us take N ¼ 10 and consider the centers to be equally spaced in the inter-
val ½a; b�. In other words, the set P ¼ fa ¼ x1; x2; . . . ; b ¼ x10g produces an equipartition of ½a; b�, and the function is known at
these locations. The problem of expressing V in the form (13) results in a linear system of equations for the coefficient values,
ci, which is written in matrix form as
Grðx1 � x1Þ � � � Grðx1 � x10Þ
..
. . .

. ..
.

Grðx10 � x1Þ � � � Grðx10 � x10Þ

0BB@
1CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

c1

..

.

c10

0BB@
1CCA

|fflfflfflffl{zfflfflfflffl}
C

¼

Vðx1Þ
..
.

Vðx10Þ

0BB@
1CCA

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
V

ð15Þ
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Now, we introduce the idea of a local problem, which considers only a cluster or small sub-set of particles that are close to
each other (in the Euclidean sense), and solves the collocation problem locally using the corresponding sub-set of basis func-
tions. For the purposes of our illustration, let us define five local domains with particles fx2i�1; x2ig in local domain i, for i from
1 to 5.

The first and most basic idea of localization would attempt to solve each local problem separately; in the ongoing exam-
ple, this would translate into solving five 2� 2 linear systems. For example, if we consider the problem in local domain 3, the
system is:
Grðx5 � x5Þ Grðx5 � x6Þ
Grðx6 � x5Þ Grðx6 � x6Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A3

c5

c6

� �
¼

Vðx5Þ
Vðx6Þ

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

V3

ð16Þ
where A3 denotes the matrix associated to local domain 3. In general Aj will refer to the matrix representing the pair-wise
influence of particles in local domain j.

Clearly, a straightforward superposition of the solutions to the local problems will be a bad approximation of the global
problem, because the global influence of the basis functions will result in additional contributions from each local domain to
the function value at each particle center. This will spoil the collocation obtained by the local problem at each particle
location.

Hence, the second approach that one may think of would solve each of the local problems, but somehow taking
into account the long-range influence of other local domains. Again using our simple 1D illustration, suppose that we
are solving local problem 3, but we want to take into consideration all the particles, resulting in the following
equation:
Grðx5 � x1Þ Grðx5 � x2Þ � � � Grðx5 � x10Þ
Grðx6 � x1Þ Grðx6 � x2Þ � � � Grðx6 � x10Þ

� � c1

..

.

c10

0BB@
1CCA ¼ V3 ð17Þ
We are left with an underdetermined system of two equations with 10 unknowns — we want to fit only the two particles in
local domain 3, but taking into consideration all the particles in the other local domains. At this point, we introduce the strat-
egy of iterations. Suppose that we have an initial guess for the coefficients corresponding to all the particles. Then we pro-
ceed to solve each local problem separately, but using the initial guess for the coefficients of the particles not in the local
domain to include the long-range influence of all particles. Thus, all terms in (17) except those involving c5 and c6 are moved
to the right-hand-side, and we again have a 2� 2 system, but with the influence of all particles incorporated. Once all the
local systems are solved, we have a new set of coefficients ci which constitutes the first iteration. The process can now be
repeated, and we submit to further investigation whether this strategy will produce convergence to an accurate solution
of the global problem (see Section 4).

To continue using our 1D illustration, we introduce notation to refer to the iterations, in addition to the numbering of
local domains. Let us continue referring to local domain 3 as an example and consider:

Particles in the local domain: The particles in local domain 3, in this case fx5; x6g, will be identified by fx3
1; x

3
L3
g — in a gen-

eral case this becomes xj
i where i locally enumerates the particles in the local domain j, and Lj is the index of the last par-

ticle in local domain j. We introduce this notation because in general we might have local domains with different
numbers of particles. So if local domain 3 were to have more elements, they would be identified as: fx3

1; x
3
2; x

3
3; . . . ; x3

L3
g.

Coefficients of particles in a local domain over iterations: The coefficients associated to the particles in local domain 3,
fc5; c6g, at iteration 0 will be identified as follows: fc3ð0Þ

1 ; c3ð0Þ
L3
g — in a general case this becomes cjðtÞ

i where i and j have
the same purpose explained above and t identifies the iteration number.

Let us denote by Cð0Þ the vector formed by the initial guess for all the coefficients. The elements of this vector can be written
in the ‘global notation’ or in the ‘local notation’, as follows:
Cð0Þ ¼ cð0Þ1 ; cð0Þ2 ; . . . ; cð0Þ10

� �T
global notation ¼ c1ð0Þ

1 ; c1ð0Þ
L1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Cð0Þ1

; c2ð0Þ
1 ; c2ð0Þ

L2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Cð0Þ2

; . . . ; c5ð0Þ
1 ; c5ð0Þ

L5|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Cð0Þ5

0BBB@
1CCCA

T

local notation
so in general CðtÞ identifies all the coefficients of the particles at iteration t; CðtÞj identifies the coefficients of the particles that
belong to local domain j at iteration t, and T denotes the transpose operator.

Going back to our example where we are solving for local domain 3, we are left with the following system:
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Gr x3
1 � x3

1

	 

Gr x3

1 � x3
L3

� �
Gr x3

Lj
� x3

1

� �
Gr x3

Lj
� x3

L3

� �
0B@

1CA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A3

c3ð1Þ
1

c3ð1Þ
L3

 !
|fflfflfflfflffl{zfflfflfflfflffl}

Cð1Þ3

¼
Vðx5Þ
Vðx6Þ

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

V3

�
Grðx5 � x1Þ � � � Grðx5 � x4Þ
Grðx6 � x1Þ � � � Grðx6 � x4Þ

� � cð0Þ1

..

.

cð0Þ4

0BB@
1CCA � � �

�
Grðx5 � x7Þ � � � Grðx5 � x10Þ
Grðx6 � x7Þ � � � Grðx6 � x10Þ

� � cð0Þ7

..

.

cð0Þ10

0BB@
1CCA
Rewriting the right-hand-side, we have:
A3C
ð1Þ
3 ¼ V3 �

Grðx5 � x1Þ � � � Grðx5 � x10Þ
Grðx6 � x1Þ � � � Grðx6 � x10Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bA3

cð0Þ1

cð0Þ2

..

.

cð0Þ10

0BBBBB@

1CCCCCA
|fflfflfflfflffl{zfflfflfflfflffl}

Cð0Þ

þA3C
ð0Þ
3

which is written using the matrix notation as
A3C
ð1Þ
3 ¼ V3 � bA3C

ð0Þ þ A3C
ð0Þ
3

where in general bAj is the interaction of the particles in local domain j against all the particles. We can interpret the expres-
sion Vj � bAjC

ðtÞ as the residual at iteration t on the local domain j.
Therefore, the iterative algorithm in general is expressed by:
AjC
ðtþ1Þ
j ¼ Vj � bAjC

ðtÞ þ AjC
ðtÞ
j ð18Þ
which now allows us to generalize it to any partition of a domain in any dimension.
The algorithm developed thus far has the following important features:

	 For a partition of the global domain containing N particles, where each local domain has L� N particles clustered
together, we need to solve many small local systems at each iteration, rather than one very large system for the global
problem.

	 Each local system is solved independently at each iteration, which means that the algorithm is highly parallel.
	 We do not need to build the complete coefficient matrix of size N � N in memory at any time.

The features listed above suggest that we have a potentially excellent method for solving our global interpolation problem,
with very large numbers of centers N — if only the iterations would converge to an accurate solution. Unfortunately this is
not the case, as will be demonstrated with numerical experiments in the next section.

As it turns out, the strategy introduced so far does produce an excellent method if we add only one more ingredient: a
‘‘buffer” area around each local domain, where particles are considered local and solved for together with the local problem.
In our previous 1D example, when considering local domain 3, we would take particles on each side of domain 3 to include in
the local solution. The extent of this ‘‘buffer” zone needs to be investigated, but let us start by considering simply the same
size as the local domain. Thus for local domain 3, the buffer consists of domains 2 and 4. Let us use underlines to denote a
local domain with its buffer area, so 3 denotes a larger local domain consisting of sub-domains 2, 3 and 4. Now we can use
the algorithm of localization and iteration, as described previously, on the underlined sub-domain with its buffer.
AjC
ðtþ1Þ
j ¼ Vj � bAjC

ðtÞ þ AjC
ðtÞ
j ð19Þ
The clue for the method to converge, as we will demonstrate experimentally, is that the solution to this larger local domain is
not used in its entirety to update Cðtþ1Þ from Cðtþ1Þ

j . In fact, only the part of the solution vector corresponding to the local
domain without the buffer area is used, and the part of the solution vector corresponding to the buffer zone is discarded. This
is why we call it a ‘‘buffer”: it provides a zone that cushions the new solution from the local effect of the long-range influence
of the previous iteration. So, in terms of the ongoing 1D example where we solve for the buffered domain 3, we can illustrate
the procedure with:
Cð1Þ3 ¼

..

.

Cð1Þ3

..

.

0BBB@
1CCCA! recover Cð1Þ3 from Cð1Þ3 ! update Cð1Þ using Cð1Þ3
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In summary, we solve each local problem including its buffer area, but recover only the coefficients associated with the local
domain to update the global solution, discarding the new values at the buffer zone.

3.2. Two-dimensional application

In fact, the iterative algorithm presented is applied exactly in the same way for any dimension. We just need to identify
what is meant by the local domain and the buffer zone for the two-dimensional case. This is best illustrated by means of a
figure. Consider Fig. 1, where we have sketched a computational domain in two dimensions, where the particles reside. The
local domains here are represented by the square areas, but we emphasize that the local domains can have any shape: they
could be circular, or they could be formed by some clustering algorithm. In the figure, we show how a local domain, indicated
by the darker square, is surrounded by a ‘‘buffer zone”, indicated by the lighter shaded squares, all around. Again, the linear
size of the buffer zone is here assumed to be the same as the local domain size, but this is not a requirement. Rather, we
submit to further investigation which is the optimal size of the buffer zone, such that it is as small as possible but ensures
convergence of the iterative algorithm.

The description of the algorithm given by Eq. (19) applies with no modification in two and three dimensions. In the fol-
lowing section, we present numerical experiments in 1D and 2D.

3.3. Providing an initial guess

In the vortex method, it is common that initialization will be performed by laying out particles on a square lattice and
estimating the particle weights simply by using the local value of vorticity times a rough estimate of the particle areas
(or volumes in 3D). This initialization is quite standard, and is expressed as follows:
Fi
ci ¼ xðxiÞhd ð20Þ
where d is the dimension. In [3], it has been proved that this initialization amounts to a Gaussian blurring of the original field.
It is a simple method, performed with very low computational effort, but the accuracy is quite low. For our purposes, how-
ever, it provides for an excellent initial guess to be used in the iterative algorithm.

3.4. Summary of the algorithm

To summarize the complete algorithm, as developed in this section, we provide a listing in pseudo-code. See Algorithm 1,
below. To be specific, the algorithm refers to our problem of interest, i.e. representing the vorticity field of a fluid by a sum of
Gaussian particles, instead of a general RBF interpolation problem. We treat the two-dimensional case, where the particle
circulations (the solution of the RBF interpolation) are scalars. We also do not give details of the part of the algorithm that
generates the local domains, and just list a call to a function generateLocalDomains(�); this could be a boxing or a clus-
tering method of choice. It should include a method for determining the adjoining boxes or clusters which constitute the
buffer layer for each local domain. We indicate this by the variable Buffer which contains in element i the indices of the
elements of LD that belong to the buffer layer of local domain i. Note that the number of local domains K does not depend
on the data Z itself, but rather on the extreme values of the data in each dimension and the size of the local domains, stip-
ulated as input. We list a call to a function FGT(Z,G) to represent the computation of the vorticity values induced by particles
located at positions Z with circulation weights G. This method can be an implementation of a fast summation algorithm such
as the Fast Gauss Transform, as discussed in Section 5.2.
Domain
Local 

domain

Buffer zone

g. 1. Illustration of the spatial decomposition used in the method of localization with iteration, using a buffer zone, as explained in the text.
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Algorithm 1. RBF solution by localization and iteration
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Fig. 2. The test function in one dimension.
Require: V {Exact value of the vorticity at particle locations},

Z {Location of the Gaussian particles},

I {The number of iterations to be performed by the algorithm},

r;h {Size of the Gaussian particles, and their separation parameter},

sizeLD {The multiple of r defining the linear size of local domains},

d {Dimension of the data, 2 in our case}
Ensure: G {The weight (circulation) of the particles}

1:
 G V� hd {Get the initial guess}

2:
 ½LD;Buffer;K�  generateLocalDomainsðr;Z;sizeLD;dÞ {Build the local domains LD with the data Z,

defining the size of each local domain with sizeLD and d, and get the list Buffer of buffer domains. K is the
resulting number of local domains.}
3:
 for n = 1:I do

4:
 Ve FGTðZ;GÞ {Compute the vorticity induced by the particles with circulation G}

5:
 fori = 1:K do

6:
 LDi Buffer ½LDfig;LDfBufferfigg� {Temporarily store the particles in the local domain i and the

particles in its buffer layer}

7:
 [A,M] = buildA(LDiBuffer) {Build the matrix A of interaction among the particles in LDi_Buffer and the

preconditioner M to be used for solution of the local system}

8:
 b = V(LDi_Buffer)-Ve(LCi_Buffer) +A�G(LCi_Buffer) {Construction of RHS based on Eq. (19)}

9:
 x = gmres(A,b,M) {Solve the linear system M1Ax ¼ M1b using the gmres iterative method}

10:
 iG(LD{i}) = recoverParticlesAtLDi(x) {Recover the circulation values associated to the particles that

are in local domain i ignoring particles that are in the buffer layer}

11:
 end for

12:
 G iG {Update the circulation values}

13:
 end for
4. Numerical experiments

4.1. Experiments with a 1D test function

We begin with a demonstration of the main ideas presented on a one-dimensional test function. The test function used is
plotted in Fig. 2, and it was formed with a number of shifted Gaussians of varying width and height, resulting in a function
with support in the domain [�1,1].
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First, we demonstrate the simplest localization idea, which solves many small local systems, and superposes the local
solutions. This of course does not work, and as seen on Fig. 3 results in c values which reconstruct the function with larger
error than the simple estimation described in Section 3.3. The error in this very small 1D test is Oð1Þ. Note that in Fig. 3 the
border between the local domains is shown on the top horizontal axis of the plot by diamond markers. There are 20 local
domains, of size 0.1 each, and 51 equally spaced centers for the ‘‘particles”. The one-dimensional Gaussian bases at each cen-
ter have a scale of r ¼ 0:05 and so the ratio between their spacing and scale is h=r ¼ 0:04=0:05 ¼ 0:8

Next, we demonstrate the second approach discussed in Section 3.1, and expressed by the iterative algorithm (18). In this
case, we are solving small local problems, but the long-range effect of the other local domains enters on the right-hand-side
of the system, as described in Section 3.1. The method starts with an initial guess, which in this case is obtained by (20). Fig. 4
shows the spatial error of interpolation on our 1D test function, for five consecutive iterations of this method. It can be seen
that the iterations do not improve on the initial guess in any way. In fact, if one continues iterating, the solution eventually
diverges, as shown in Fig. 5.

Finally, we demonstrate the third and last method developed in Section 3.1 — the complete method of localization and
iteration with buffer domains. The algorithm is expressed in Eq. (19), and iterates on an initial guess, solving local problems
with a buffer layer. It was left pending in Section 3.1 that we investigate the size of the buffer layer that will produce con-
vergence of the method. Consider first using local domains of length 2r and buffer domains of the same length. The result on
our 1D test function is shown in Fig. 6, where we can see that the error is reduced considerably after 25 iterations, with re-
spect to the initial guess. The convergence of the solution is rather slow, however, as shown in Fig. 7. To convince ourselves
that the method does indeed converge to a good solution, the experiment was continued to 160 iterations. As shown in Fig. 8,
the error reaches machine precision eventually.

Increasing the size of the buffer layer around each local domain has the effect of speeding convergence of the iterations.
This is illustrated in the next experiment, where the same 1D test function is interpolated using more particles this time,
with smaller spread. On the previous examples, the Gaussian bases used had r ¼ 0:05, and now we use r ¼ 0:02 resulting
in 126 particles on the 1D domain. With local domains and buffer domains of length equal to 10r each, the iterative method
improves on the initial guess very rapidly. Fig. 9 shows the spatial error of the interpolation in this case, and Fig. 10 shows
the convergence as indicated by the L2-norm error at each iteration. The method provides close to machine precision after
about 10 iterations.

All the experiments presented in this section were realized using MATLAB, and the local systems were solved using the
built-in backslash operator, n.

4.2. Experiments with a Lamb–Oseen vorticity distribution in 2D

The Lamb–Oseen vortex is an analytical solution of the 2D Navier–Stokes equations, and it is often used to verify vortex
codes. We use this axisymmetric vorticity distribution as the first test case in two dimensions. The vorticity is given by:
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Fig. 3. 1D spatial error of interpolation using the test function of Fig. 2, with 51 Gaussian particles, r ¼ 0:05, overlap h=r ¼ 0:8. The particle coefficients are
found solving 20 local problems, with local domain size � 2r. The diamond markers on the top horizontal axis indicate the point that separates one block
from the next. The error of the initial guess is also shown. Solving local problems does not work, because when added, the long-range effects spoil the local
solutions.
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Fig. 4. 1D spatial error of interpolation using the method of localization with iterations, as described in the text. Here, 20 local domains (whose edges are
indicated by the diamond markers on the top axis) were used, with 51 particles, r ¼ 0:05;h=r ¼ 0:8. This method does not produce convergence.
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Fig. 5. L2-norm error of interpolation of the 1D test function using the method of localization with iterations. The spatial error of the first 5 iterations is
shown in Fig. 4. It can be seen that after about 10 iterations, the solution starts diverging.
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xðr; tÞ ¼ C0

4pmt
exp � r2

4mt

� �
ð21Þ
Here, the parameter C0 corresponds to the total circulation of the vortex and m is the viscosity of the fluid. The solution
corresponds to a spreading vorticity distribution, subject to diffusion effects only. Our test case is a Lamb–Oseen vortex
centered at the origin, in a domain of size ½�1;1�2. The parameters are: C0 ¼ 1; m ¼ 0:1 and t ¼ 1. With these parameters,
the vorticity distribution is plotted in Fig. 11(a). The experiment consists of laying Gaussian particles of spread r ¼ 0:02,
with an overlap h=r ¼ 0:8 on the two-dimensional domain. The resulting number of particles is N ¼ 2

h

	 
2 ¼ 15;625, which
would be prohibitive for a global solution of the interpolation problem — especially in terms of memory requirements, if
building the coefficient matrix. We use the method of localization with iterations and buffer layer, with a local domain
length in each direction of 10r. With this, we estimate that each local domain has �156 particles. The buffer domains
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Fig. 6. Spatial error of interpolation of the 1D test function, using the method of localization with iterations and buffer layer. As in the previous examples,
the approximation uses 51 Gaussian particles with r ¼ 0:05; h=r ¼ 0:8; the length of the local domains and buffer domains is �2r.

0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

Iterations

L2
 e

rro
r

Fig. 7. L2-norm error of interpolation of the 1D test function using the method of localization with iterations and buffer layer. Parameters as in the caption
of Fig. 6.
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are of the same width in each direction as the dimensions of the local domain. Therefore, on average each local problem
involves the solution of a linear system of size 1404� 1404. Fig. 11(b) shows the solution obtained after 9 full iterations of
the method, when convergence is achieved. Fig. 12 shows the convergence of the method, in terms of the L2-norm error
over iterations.

In Figs. 13 and 14, the logarithm of the point-wise error of vorticity (normalized by the maximum vorticity) is plotted in
the 2D domain for consecutive iterations. The initial guess, using Eq. (20), results in an error of Oð10�2Þ. The iterative method
improves on the initial solution very quickly, with an error of Oð10�12Þ after 8 iterations.

In this experiment, each local domain (with its buffer particles) is solved using a preconditioned GMRES iterative method.
The sparse preconditioner used is that described in Section 2, using as sparsity criterion a tolerance level for the matrix
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Fig. 8. L2-norm error of interpolation of the 1D test function using the method of localization with iterations and buffer layer. Parameters as in the caption
of Fig. 6.
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Fig. 9. Spatial error of interpolation of the 1D test function, using the method of localization with iterations and buffer layer. Interpolation with 126
particles, r ¼ 0:02; h=r ¼ 0:8 and buffer size 10r.
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values of 10�6. The GMRES was forced to exit at 10 iterations, as these local solutions will be improved on with the global
iterations.

It was mentioned in passing before that the method of localization does not have any constraints in terms of the geom-
etry. Certainly, the local domains do not have to be rectangular. To demonstrate the method in the context of different geom-
etry features, we now present an experiment using the same Lamb–Oseen initial condition, but with a clustering algorithm
to obtain the local domains. The clustering algorithm used is the k-means method [6]. It works by first choosing k cluster
centers randomly among the source data, and subsequently assigning each other data point to the cluster center that is clos-
est to it. Iteratively, the centers are updated by taking the average of all the data points in its cluster, until the algorithm
converges.
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Fig. 10. L2-norm error of interpolation of the 1D test function, using the method of localization with iterations and buffer layer. Interpolation with 126
particles, r ¼ 0:02, overlap = 0.8 and buffer size 10r.

Fig. 11. The two-dimensional test problem: a Lamb–Oseen vortex, with parameters as given in the text. (For interpretation to colours in this figure, the
reader is referred to the web version of this paper.)
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The experiment is set up so that the number of clusters coincides with the number of square local domains that were used
in the previous experiment, shown in Figs. 13 and 14. The neighbor clusters that will constitute the buffer layer of each local
domain are chosen as those whose center is a distance of 10r or less from the center of the local domain cluster. All particle
parameters were the same as for the experiment with the square local domains of size 10r, shown above. The spatial dis-
tribution of the errors of interpolation obtained with the k-means clusters over a sample of iterations is shown in Figs. 15 and
16. It can be appreciated that the method still converges with the irregular clusters, but the convergence in this experiment
is slightly slower than with square local domains. Nevertheless, we still reach close to machine precision with excellent algo-
rithmic efficiency, see Fig. 17 .

4.3. Experiments with a physically relevant 2D vortex flow

The results presented in the previous section are very impressive, but the Lamb–Oseen vorticity distribution is quite be-
nign in the sense that it is very smooth, simple and has no interesting features. We will now use as test case a vorticity dis-
tribution which has been obtained by a vortex method calculation of a flow with physically relevant features. The vortex
code used to evolve this flow is the same as was used in the study of vortex tripoles in [1]. The actual description of this fluid
situation is not really relevant to this paper, but its features are common in vortex flows, including concentrations of vor-
ticity and filaments. The vorticity/circulation field is shown in Fig. 18; we will call this case ‘‘dipoles” just to give it a name.
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Fig. 12. L2-norm error over iterations when interpolating the vorticity of the Lamb–Oseen test problem, with 15,625 particles, r ¼ 0:02; h=r ¼ 0:8, local
domain and buffer length is 10r to each side, and the domain is ½�1;1�2. Each local system is solved using a preconditioned GMRES iterative method.
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For this test case, we have used N = 71,289 Gaussian particles of spread r ¼ 0:11278 and overlap h=r ¼ 0:8. The domain is
½�12;12�2, and the number of particles in a local domain is n ¼ 10

0:8

	 
2 � 156 on average. There are a total of 441 (21� 21)
local domains. With a buffer layer which is formed by buffer domains of the same size as the local domain, of length 10r
in each direction, the local systems being solved have 9� 156 ¼ 1404 unknowns. These systems are not that small, and
we solve them using the GMRES iterative method, with the preconditioner presented in (12). Instead of using a distance
threshold for the sparse preconditioner, we used a threshold in the matrix entry itself, making it zero if it was smaller than
10�6.

Fig. 19 shows that the method again converges very rapidly to high accuracy. Figs. 20 and 21 present the spatial distri-
bution of the error of interpolation for this case, for iterations from 0 to 9. We note that, in all cases, the maximum of the
errors occur on and around the boundaries of the local domains. To illustrate this more clearly, Fig. 22 shows a close-up over
a region covering only 9 local domains, around the origin of the coordinate system. This close-up corresponds to iteration 9,
with the full domain error field shown in Fig. 21(d).

To conclude this subsection, we include a plot showing the difference in circulation between the initial guess and the final
iteration for this experiment, see Fig. 23. We see that the iterative method has worked harder in the area around the fila-
ments of vorticity, producing a tightening of the field which was generated by the initial guess. As discussed in Section
3.3, the initial guess used is equivalent to a Gaussian blurring of the original field. Therefore, a more accurate solution of
the RBF interpolation problem counteracts this blurring by increasing the definition near features of the field, in this case
the filaments of vorticity.

4.4. Experimental study of the convergence with respect to parameters

There are several parameters which affect not only the convergence of our method but the accuracy which can be
achieved by the RBF representation. For interpolation accuracy, one crucial parameter is the overlap of the smooth basis
functions, i.e. for Gaussian bases, the ratio h=r. Theoretical studies of the convergence of the vortex method in a time march-
ing calculation have relied on the assumption that h=r < 1. At the same time, numerical experiments have demonstrated
that the quality of the approximation using Gaussian bases converges super-exponentially with particle overlap [2]. As
the particles overlap more, there is an increase in the quality of the approximation. But there is also an increase in the
ill-conditioning of the RBF interpolation problem. We anticipate that this parameter will influence the rate of convergence
of our iterative method.

The second parameter of importance for the convergence of our method is the size of the local domain, which has to be at
least a few r’s wide in each direction. Therefore, with the local domain size measured in multiples of r and the value of the
overlap, h=r, we performed a number of experiments combining different values of these parameters (the length of the buf-
fer layer was chosen equal to the local domain size, for simplicity). For each experiment, we measure the slope of the L2 error
of consecutive iterations, and we have plotted this measure in a color map; see Fig. 24. Table 1 shows the actual values of the
slope for the different calculations. As could be expected, the fastest convergence is observed for the widest local domains (of
length 12r in each direction) and the largest overlap ratio (representing less particle overlap, and therefore better



Fig. 13. Spatial error of the interpolation over consecutive iterations of the method of solution using localization and iteration. The color map shows the
logarithm of the absolute value error in the vorticity field (normalized by maximum vorticity). Parameters are indicated in the caption of Fig. 12. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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conditioning of the linear systems). The worse rate of convergence is obtained with local domains of length 6r in each direction
and h=r ¼ 0:7. Even in this case, convergence is achieved, with a rate given by a slope of -0.345 in the logarithm of the L2 error.

5. Complexity study and implementation details

We have given ample illustration of the capability of this method for solving large RBF interpolation problems with
Gaussian bases of small spread (as required in the vortex particle method). But the reader may wonder if the method is
computationally efficient. The calculations shown in the previous section, one with more than 70 thousand particles, were
carried out using 1 core of a high-end desktop computer (3GHz Intel Xeon Mac Pro). Hence, ‘production level’ calculations



Fig. 14. Continued from Fig. 13.
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are possible using modest computational resources. So far, we have only developed prototype codes, using MATLAB; an imple-
mentation in a compiled language, perhaps in parallel, would easily provide the capability to solve for millions of unknowns.
Recall that the algorithm is highly parallel, as each local system can be solved independently at each iteration. But the impor-
tant question remains of how the algorithm scales with the number of particles, N.

In this section, we analyze the computational complexity of the algorithm, and present numerical demonstration of the
observed scaling with problem size. To start, we can identify three algorithmic components:

I Generation of the local domains and assignment of particles.
II Evaluation of the radial basis function summation at all centers.

III Solution of the radial basis function interpolation on the local domains.

For these algorithmic components, first we discuss the complexity that can be obtained in theory, and subsequently we
give some experimental demonstrations.

Note that the algorithm iterates over components II and III, but we have shown previously that the convergence is fast.
The number of iterations to converge will depend on the initial guess, but the rate of convergence depends only on the size of
the local domains and the particle overlap, h=r, and does not depend on N.

Let us define the variables that we will use in the complexity analysis:

N number of particles in the global domain
n number of particles per local domain
K number of local domains
d dimension of the domain
5.1. Generation of the local domains

Component I of the algorithm corresponds to the generation of the local domains from an unordered set of locations for
the data. The problem is analogous to reordering the set of indices that identify the locations of the data. It is possible to



Fig. 15. Spatial error of the interpolation over a sample of iterations of the method of solution using localization and iteration with a buffer zone; this time
the local domains are generated using the k-means clustering algorithm. The color map shows the logarithm of the absolute value error in the vorticity field.
Particle parameters indicated in the caption of Fig. 12. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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implement a method that assigns particles to local domains in the shape of cells with OðNÞ operations, using a space-filling
curve or z-order and hashing functions (geometric hashing). Certainly, the k-means clustering algorithm is OðNÞ. We have
implemented a more simple method for space partitioning into cells, which is described below.

For simplicity, we restrict the discussion here to a square domain in two dimensions. Consider an iterative sub-division of
the domain, applied first in one linear dimension, and subsequently in the second linear dimension (in three dimensions, it
would be applied a third time, clearly without affecting the numerical complexity). Using the first linear dimension (say, the
horizontal), the domain is divided in two sections; all particle locations are compared with the limit between the sections
and assigned to one or the other in OðNÞ. The two sections are divided again in two parts each; all particles in Section 1 will
be compared with its dividing limit and assigned to one subsection or the other in N

2 operations, and the same is true of



Fig. 16. Continued from Fig. 15.
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Fig. 17. L2-norm error over iterations when interpolating the vorticity of the Lamb–Oseen test problem with k-means clustering. The spatial distribution of
the errors is shown in Figs. 15 and 16. Convergence is fast, but slightly slower than with square local domains.

Fig. 18. Vorticity field used for the final experiments, and circulation obtained by the iterative method.
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Fig. 19. L2-norm error over iterations when interpolating the vorticity of the dipoles, with 71,289 particles, r ¼ 0:11278, overlap = 0.8, buffer length is 10r
to each side, and the domain is ½�12;12�2.
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Section 2. Successively, each subsection is divided again in two. Assignment of the particle locations to each sub-division is
done in OðNÞ, for each level of sub-division, until level l. When the process is finished, there will be approximately N=2l par-
ticles in each domain section, assuming they are regularly distributed. When the sub-division of the domain is performed in
the other linear dimension, the local domains are finally obtained, with on average n particles contained in each of them.

Consider that the N particles are regularly distributed in the square domain, on a lattice of separation h in each direction.
This means that there are

ffiffiffiffi
N
p

particles per side of the domain. After the sub-divisions in the first linear dimension, there will
be rectangular sections which have

ffiffiffiffi
N
p
�

ffiffiffi
n
p

particles each; see Fig. 25. Together with the discussion in the previous para-
graph, this results in N=2l ¼

ffiffiffiffiffiffiffi
Nn
p

, which can be solved for l giving l ¼ 1
2 log2ðN=nÞ. Finally, the work needed to complete the

process is N comparisons l times, which is 
 N
2 log2ðN=nÞ. This will be repeated for each linear dimension. With n much smal-

ler than N and in fact approximately constant, given that the size of local domains is defined as a multiple of the particle size,
the asymptotic behavior for this part of the algorithm is OðN log NÞ. We repeat that this is a first implementation, useful for
our purposes but rather naive. Methods to produce a similar result in OðNÞ are known, but we have not implemented one. We
will see that this part of the algorithm does not dominate the total computational time, so a simple method is sufficient.

5.2. Evaluation of the RBF field at all particle locations

A direct summation of the influence of all particles at one evaluation point requires N operations, and thus the direct eval-
uation at all points is in principle an OðN2Þ calculation. However, fast summation methods for RBF evaluations are well-
known. If the basis function has a long-range effect (which would be the case with multi-quadric bases, and with a Coulomb
potential, for example), then the fast multipole method (FMM) can be used to evaluate the field in OðNÞ operations [12]. For
Gaussian bases, which decay so fast that long-range effects can be neglected entirely, a specialization of the FMM has been
developed, the Fast Gauss Transform (FGT), which again accelerates the evaluation to OðNÞ [18]. We would not go into the
details here; let us just say that with an FGT implementation, the evaluation of the summation of Gaussians is OðNÞ.

5.3. Solution of the radial basis function interpolation on the local domains

The algorithm described here requires the solution of many small linear systems, corresponding to the local domains with
their buffer layer, instead of the global problem. The local systems are of size n3d, assuming that the buffer layers will have
the same linear dimensions as the local domain, for simplicity. The number of particles per local domain, n, is approximately
constant and not a function of N. This is because the size of local domains is chosen a priori as a function of r, the spread of
the Gaussians, and the particle density is given by the overlap parameter, h=r. For example, if we choose the length of local
domains to be 10r, and the overlap h=r ¼ 0:8, we always obtain n � 156 (in 2D).

The work required to solve the local systems is, therefore, ðn3dÞ2 per iteration, using a GMRES iterative method. The number
of iterations in these GMRES solves is not important, as the solutions are approximate and outer iterations will ensure the final
convergence. We have to solve K such linear systems; therefore the total work is 
K(n3d)2. The number of local domains can
be approximated by K ¼ N

n, the total number of particles divided by the number of particles in local domains. This results in
an OðNÞ estimate for the final part of the algorithm.



Fig. 20. Spatial error of the interpolation over consecutive iterations of the method of solution using localization and iteration with buffer layer. The color
map shows the logarithm of the absolute value error in the vorticity field, normalized by maximum vorticity. Parameters indicated in the caption of Fig. 19.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.4. The final complexity

In summary, the three algorithmic components give the following complexity:

I Generation of the local domains — this process can be done in OðNÞ but our naive implementation is OðN log NÞ.
II Evaluation of the radial basis function summation at all centers — using a known fast summation method, such as

FGT, this can be done in OðNÞ.
III Solution of the radial basis function interpolation on the local domains — this is estimated at OðNÞ.



Fig. 21. Continued from Fig. 20.
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Fig. 22. Zoom-in to an area near the center of Fig. 21(d), showing that the maximum errors occur at the edges and corners of the physical blocks.
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The final complexity would seem to be dominated by component I of the algorithm at OðN log NÞ, in our implementation. We
observe in practice, however, that this part of the algorithm does not dominate the total computational time. At least for the
problem sizes we have experimented with, the generation of the local domains is less time consuming than the solution of
the linear system iteratively.



Fig. 23. The difference between the first guess of the circulation or iteration 0 and the last value of the circulation or iteration 9.

5 6 7 8 9 10 11 12 13
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Local domain size (number of sigmas)

ov
er

la
p

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

Fig. 24. Parameter study of convergence rate. Each marker represents one calculation; the color maps the value of the slope of the L2-norm error on a log
plot, for the parameters indicated on the axes: size of the local domain in terms of multiples of r and overlap ratio, h=r. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Slope of the logarithmic convergence rate, in terms of the L2-norm error, for combinations of parameters: on the first column is indicated the overlap ratios,
h=r, and on the header row is the width of the local domains in multiples of r.

6 8 10 12

1.0 �1.4567 �1.9416 �2.3243 �2.4927
0.9 �1.0003 �1.4581 �1.8280 �2.1811
0.8 �0.6900 �1.1170 �1.4700 �1.7596
0.7 �0.3450 �0.7305 �1.0392 �1.2702
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5.5. Complexity observed in numerical experiments

Fig. 26 shows the results of performing various numerical experiments with increasing problem size, N. The computa-
tional time required for components I and III of the algorithm is shown. The time for component II is not included because
we have not at this time implemented a fast summation method; as we have said, known algorithms exist for performing
this part in OðNÞ. As can be seen in the plot, the expected OðNÞ complexity is achieved in practice for component III of the
algorithm, the solution of the linear system iteratively. Component I of the algorithm, the generation of the local domains,
exhibits a slope of 1.0732. This is close to OðN log NÞ in this range of N, but note that the time required for this part of the



Fig. 25. Sketch showing the whole square domain holding N particles, a sub-divided domain in only one linear dimension, and the final local domains
holding n particles each.
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Fig. 26. Observed computational complexity in numerical experiments using local domains of size 12r� 12r in 2D. The slopes obtained from regression
show that the expected OðNÞ is achieved in practice for component III of the algorithm, the solution of the linear system iteratively. Component I of the
algorithm, the generation of the local domains, exhibits a slope of 1.0732, which is close to OðN log NÞ for this range of N, but is not dominant, being several
orders of magnitude less time consuming than component III.
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algorithm is several orders of magnitude smaller than the solution of the RBF interpolation problem on the local domains.
Moreover, the generation of local domains needs to be completed only once, while the complete algorithm includes itera-
tions on components II and III. A more careful study would count floating point operations, rather than report time, but
we plan to perform such a study later, when the method has been implemented in a compiled language and in parallel. This
is future work.

6. Conclusions

In the vortex method for the solution of the Navier–Stokes equations, the vorticity field of a fluid is represented by a
superposition of smooth particles. This amounts to a radial basis function (RBF) interpolation problem, which needs to be
solved normally in two stages of a vortex method calculation: at initialization, and after spatial adaptation of the particles
using a meshfree method. Mesh-based spatial adaptation schemes exist that do not require RBF interpolation; they are for-
mulated using tensor products and interpolate the circulation (strength) of particles rather than the vorticity field. Although
these methods have been used with great success, they do require a regular mesh on the domain and they can introduce
some diffusive interpolation errors. RBF interpolation offers a high order of convergence and the potential of high accuracy.
On the other hand, it requires the solution of a large, ill-conditioned linear system. In this work, we have presented a method
to solve this system when one uses a basis function that decays rapidly away from its center (like the Gaussian). The method
consists of the construction of many local domains, where a small system can be solved, but introducing the global influence
of the rest of the domain through iterations. The algorithm is highly parallel, because each local system is solved
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independently within each iteration. Moreover, there is never a need to construct the global coefficient matrix in memory.
These features allow one to solve large problems using moderate computational resources.

We have developed the method first using a one-dimensional example, where the importance of considering the global
influence in the local problems has been demonstrated. Then we have shown the effect of the iterative approximation to the
solution on two-dimensional tests, using both rectangular local domains, as well as irregular cluster-type domains. One test
problem presented corresponds to a field of physical significance, where a vortical flow has developed multi-polar structures
and filaments. In all cases, the method demonstrates excellent algorithmic efficiency.

Finally, a study of the complexity of the different algorithmic components of the method has shown that it is not expen-
sive computationally. The solution of the many local systems, with a buffer layer, and repeatedly within iterations, sounds
like a lot of computational work. In fact, the work scales linearly with the number of unknowns. The evaluation of the sum of
basis functions can also be done in OðNÞ operations, using for example an implementation of the Fast Gauss Transform. In our
implementation of the algorithm, the construction of the local domains is done in OðN log NÞ operations, but this can be im-
proved. There are known methods to produce the geometric division of space in OðNÞ. We have not implemented one, but we
observe that the time required to generate the local domains is nevertheless much smaller than that required by other parts
of the algorithm.

In future work, we will proceed with implementing the method in a compiled language, and demonstrating its highly par-
allel features. A parallel implementation should be able to handle millions of particles easily with modest computational re-
sources, and we aim to demonstrate this capacity.

Note added in proof

A code in Python has been produced that reproduces the Matlab code used in this work. We are making the Python code
available to the community, and welcome correspondence from interested users. The code is found at http://code.google.com/p/
pyrbf/. We thank Dr Rio Yokota for translating the Matlab code to Python.
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